AP CHEMISTRY SUMMER ASSIGNMENT (2017-2018)

and First Day Test Material

Please Note: This assignment is a requirement, and is NOT for extra credit!

- 1. Purchase your own copy of <u>5 Steps to a 5 AP Chemistry 2016</u>, Langley and Moore, McGraw Hill, 2015 (or newer). This edition has been written to prepare for the changes to AP Chemistry. Also, you are highly encouraged to purchase the companion book, <u>5 Steps to a 5 500 AP Chemistry Questions to know by test day</u>, 2nd Edition, Mina Lebitz, McGraw Hill, 2015 (or newer). This book will be very helpful when you are reviewing for the exam. This book will probably be difficult to find in the stores later in the school year.
- 2. Buy a few color highlighters.
- 3. Read and study Chapters 1, 2, and 4. Highlight material that applies to you.
- 4. Take the diagnostic test in chapter 3.
- 5. Take a look at the AP College Board and other websites. List the three most useful in the front cover of your book
- 6. Read and study (highlight, take notes in the margin, etc) and do all the review questions at the end of the chapter for Chapter 5 Basics and Chapter 7 Stoichiometry.
- 7. Bring your highlighted book, notes and diagnostic test to school the first day of class. It should be evident that you spent several hours studying and reviewing.

NO LATE ASSIGNMENTS WILL BE ACCEPTED!!!

AP CHEMISTRY FIRST DAY TEST

AP Chemistry is a difficult course. It is not all about memorization; however, having the following items memorized is essential for success in learning the concepts covered in the course. Make flashcards, have your friends and family quiz you, take the lists with you on vacation, or do whatever it takes to get this information firmly planted in your head. Do not wait until the night before school begins.

The first day test will cover six areas of memorization:

- 1. Polyatomic Ions (including name, symbol and charge)
- 2. Variable Valences for Transition Metals
- 3. Rules for Naming Acids
- 4. Rules for Naming Ionic Compounds
- 5. The Solubility Rules
- 6. Determining Oxidation Numbers

Advanced Placement Chemistry is a college level course. You will need to be dedicated and work very hard if you are to be successful.

Polyatomic Ions

Name	Symbol	Charge
ammonium	NH ₄	+1
acetate	C ₂ H ₃ O ₂	-1
bromate	BrO ₃	-1
chlorate	ClO₃	-1
chlorite	CIO ₂	-1
cyanide	CN	-1
dihydrogen phosphate	H₂PO4	-1
hypochlorite	CIO	-1
hydrogen carbonate (bicarbonate)	HCO₃	-1
hydrogen sulfate (bisulfate)	H5O ₄	-1
hydrogen sulfite (bisulfite)	HSO₃	-1
hydroxide	ОН	-1
iodate	IO ₃	-1
nitrate	NO ₃	-1
nitrite	NO ₂	-1
perchlorate	ClO ₄	-1
permanganate	MnO ₄	-1
thiocyanate	SCN	-1
carbonate	CO ₃	-2
chromate	CrO ₄	-2
dichromate	Cr ₂ O ₇	-2
oxalate	C ₂ O ₄	-2
selenate	SeO ₄	-2
silicate	SiO₃	-2
sulfate	504	-2
sulfite	5O ₃	-2
phosphate	PO ₄	-3
phosphite	PO ₃	-3

Rules for Naming Ionic Compounds

- 1. Balance charges (charges should equal zero)
- 2. Cation is always written first (in name and in formula)
- 3. Change the ending to -ide for binary formulas

Variable Valences for Transition Metals

Name	Symbol	Charge	Stock Name
chromium	Cr	+2	chromium (II)
		+3	chromium (III)
manganese	Mn	+2	manganese (II)
		+3	manganese (III)
iron	Fe	+2	iron (II)
		+3	iron (III)
cobalt	Со	+2	cobalt (II)
		+3	cobalt (III)
copper	Cu	+1	copper (I)
		+2	copper (II)
lead	Pb	+2	lead (II)
		+4	lead (IV)
mercury	Hg	+1	mercury (I)
		+2	mercury (II)
tin	Sn	+2	tin (II)
		+4	tin (IV)
gold	Au	+1	gold (I)
		+3	gold (III)
silver	Ag	+1	silver
		+2 (rarely)	silver (II)
bismuth	Bi	+3	bismuth (III)
		+5	bismuth (V)
antimony	Sb	+3	antimony (III)
·		+5	antimony (V)
cadmium	Cd	+2	cadmium
zinc	Zn	+2	zinc

Caarman	J 04	· -	Caaiiiiaiii
zinc	Zn	+2	zinc
	Rules for Na	ming an Acid	
1. When the name of	the anion ends in -ide	e, the acid name begir	is with the prefix
hydro-, the stem of	the anion has the suf	fix -ic and is followed	by the word acid
•	hydroic acid		,
	ride ion, so HCl = hy		
2. When the anion no	ame ends in -ite, the o	acid name is the stem	of the anion with
the suffix -ous, follow	owed by the word acid	l.	
-ite becomes	ous acid		
·	nlorite ion so HClO	2 = chlorous acid	
	ame ends in -ate, the ved by the word acid.	acid name is the sten	n of the anion wit

-ate becomes _____ic acid

 ClO_3^- is the chlorate ion so... $HClO_3$ = chloric acid

Rules for Determining Oxidation Number

Oxidation Number: A number assigned to an atom in a molecular compound or molecular ion that indicates the general distribution of electrons among the bonded atoms.

- 1. The oxidation number of any uncombined element is 0.
- 2. The oxidation number of a monatomic ion is equal to the charge of the ion.
- 3. The more electronegative element in a binary compound is assigned the number equal to the charge it would have if it were an ion.
- 4. The oxidation of fluorine in a compound is always -1.
- 5. Oxygen has an oxidation number of -2 unless it is combined with F, when it is +2, or it is in peroxide, when it is -1.
- 6. The oxidation number of hydrogen in most of its compounds is +1 unless it is combined with a metal, in which case it is -1.
- 7. In compounds, the elements of groups 1 and 2 as well as aluminum have oxidation numbers of +1, +2, and +3, respectively.
- 8. The sum of the oxidation numbers of all atoms in a neutral compound is 0.
- 9. The sum of the oxidation numbers of all atoms in a polyatomic ion equals the charge of the ion.

Solubility Rules

- 1. All compounds containing alkali metal cations and the ammonium ion are soluble.
- 2. All compounds containing NO_3^- , ClO_4^- , ClO_3^- and $C_2H_3O_2^-$ anions are soluble.
- 3. All chlorides, bromides, and iodides are soluble except those containing Ag^{+} , Pb^{+2} , and Hg^{+2} .
- 4. All sulfates are soluble except those containing Hg_2^{+2} , Pb^{+2} , Sr^{+2} , Ca^{+2} , Ba^{+2} .
- 5. All hydroxides are insoluble except compounds of the alkali metals, Ca^{+2} , Sr^{+2} , and Ba^{+2} .
- 6. All compounds containing PO_4^{-3} , S^{-2} , CO_3^{-2} , and SO_3^{-2} ions are insoluble except those that contain alkali metals or NH_4^+ .

Summer Assignment (continued)

Because we have so much material to cover in AP Chemistry, you need to stay current and/or refresh your knowledge from your first year of Chemistry. We will be using the FlinnPrep AP Chemistry Prep Course module.

You are required to complete the first 10 units of the module. Do not work past these 10. We will complete the other units and practice tests later in the school year.

Here is an explanation of how each unit is set up:

- When you open each unit, it will say how long the unit will take you. THIS IS
 AN ESTIMATE and varies depending on the student. The units may take
 longer for some students to complete.
- Each unit has reading material, a few short videos, some "Quick Quizzes," and a Final Assessment. The reading, videos, and quizzes are designed to help prepare you for the final assessment.
- The final assessment consists of 20 multiple choice questions randomly selected from a bank of questions.
 - 1. No two assessments are the same.
 - 2. If you score 80% or higher on the assessment, the unit becomes locked and you can no longer retake the assessment. Your score will be final.
 - 3. If you score less than 80%, you will need to review the material and retake the assessment until you obtain a passing score.

You should be working weekly. Don't wait until the week before school starts to cram all the work; you won't have enough time and it just isn't effective nor productive. I will be monitoring your progress weekly.

You must create an account to access the online course. Follow the directions below to create your account.

- 1. Email me at dmaggi@pasco.k12.fl.us I will send you the student linking code.
- 2. Go to the FlinnPrep website: https://www.flinnprep.com/
- 3. Enter the code and click ACTIVATE.
- 4. Enter your name, school, email address and create a password to finish setting up your account.

Your efforts and results on the 10 units will be a test grade.