

Packet

Notes

Example: Find the equation of a line that passes through (-1, 2) and (5, 7).

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 2}{5 + 1} = \frac{5}{6}$$

$$y - y_1 = m(x - x_1)$$

$$y - z = \frac{5}{6}(x - 1)$$

$$y - z = \frac{5}{6}(x - 1)$$

$$y - z = \frac{5}{6}x + \frac{5}{6}$$
 or $y = \frac{5}{6}x + \frac{17}{6}$

 \checkmark Things to remember: Slope formula, point-slope form, slopeintercept form, parallel lines have equal slope, perpendicular lines have slopes that are opposite reciprocals, vertical lines have undefined slope, horizontal lines have a slope of zero

Practice Problems

Write the equation of the line described below.

1) Passes through the point (2, -1) and has slope $-\frac{1}{3}$.

2) Passes through the point (4, -3) and is perpendicular to 3x + 2y = 4.

3) Passes through (-1, -2) and is parallel to $y = \frac{3}{5}x - 1$.

4) Passes through the points (1, -2) and (2, 1).

5) Passes through the points (2,3) and (-1,3).

6) Write an equation for a line that passes through (2,3) and is (a) horizontal and (b) vertical.

(SYMPtotes

Notes

Example: Find the vertical and horizontal asymptotes of $y = \frac{5x^2 - 4x - 1}{x - 1}$

 $\frac{(5x+1)(x-1)}{x-1} \quad \text{No vertical asymptotes}$ $\lim_{X \to \infty} 5x+1 = \infty \qquad \lim_{X \to -\infty} 5x+1 = -\infty$ No horizontal asymptotes

✓ **Things to remember:** End behavior is the same thing as horizontal asymptotes! Vertical asymptotes occur at non-removable discontinuities!

Practice Problems

Identify any vertical or horizontal asymptotes.

7) $y = \frac{1}{x-1}$ 8) $y = \frac{2x^2}{3x^3 - 4x + 1}$

9)
$$y = \frac{x^2}{x^2 - 1}$$
 10) $y = \frac{x - 4}{-4x + 16}$

11)
$$y = \frac{3x^2}{2x^2 - 3x + 3}$$
 12) $y = \frac{x^3 - 9x}{-4x^3 + 4x^2 + 24x}$

factoring

Notes Example: Factor $9x^2 + 3x - 3xy - y$ completely. $9x^2 + 3x - 3xy - y$ 3x(3x+1) - y(3x+1) (3x+1)(3x-y)(3x+1)(3x-y)

✓ **Things to remember:** First thing you look for is a GCF! If you have four terms the best way to approach factoring is by grouping! Don't forget about difference of squares and sum and difference of cubes!

Proceice Problems Factor Completely. 13) $64x^6 - 1$

14) $42x^4 + 35x^2 - 28$

15) $6x^3 - 17x^2 + 5x$

Simplify. 16) $\frac{(x+1)^3(x-2)+3(x+1)^2}{(x+1)^4}$

EXPONENTIAL AND RADICAL FORM

Notes

Example: Convert $\frac{\sqrt[7]{a^3}}{\sqrt[3]{a}}$ from radical form to exponential form.

$$\frac{a^{3/7}}{a^{1/3}} = 0$$

$$= 0$$

$$= 0$$

$$\frac{a^{3/7}}{a^{1/3}} = \frac{1}{a^{3/7}}$$

$$= 0$$

 \checkmark Things to remember: Rationalizing involves multiplying by the conjugate.

Practice Problems

Rationalize the numerator or denominator.

17) $\frac{3}{1-\sqrt{2}}$	$\frac{x}{x-2}$	18)	$\frac{\sqrt{x+1}+1}{x}$

Simplify the exponential expression.

Convert from radical form to exponential form or vice versa. $21) \sqrt[5]{x^4}$ $22) (81m^6)^{\frac{1}{2}}$

23)
$$9^{\frac{1}{2}}$$
 24) $\frac{\sqrt[7]{x^9}}{\sqrt[5]{x^6}}$

Parent functions (Ind transformations Notes Example: Describe how $f(x) = x^3$ was transformed into $g(x) = (-x)^3 + 3$. $f(x) = x^3$ powent function $g(x) = (-x)^3 + 3$ $g(x) = (-x)^3 + 3$ reflected over y

Proceive ProblemsSketch the graph of the given parent function.25) $y = \sqrt{x}$ 26) $y = x^3$

27)
$$y = \ln x$$
 28) $y = |x|$

29)
$$y = e^x$$
 30) $y = \sqrt[3]{x}$

31)
$$y = x^2$$
 32) $y = \frac{1}{x}$

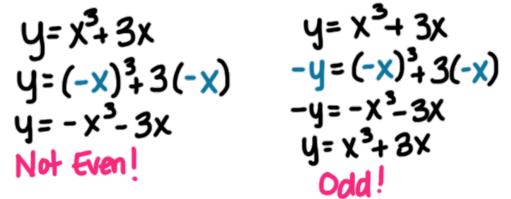
Describe how f(x) was transformed into g(x). 33) $f(x) = x^2$ $g(x) = (x + 2)^2 - 3$

34)
$$f(x) = |x|$$
 $g(x) = |x - 5| + 2$

Even AND ODD FUNCTIONS

Notes

Example: Determine if $y = x^3 + 3x$ is even, odd, neither, or both.



✓ **Things to remember:** To test for symmetry with the y-axis (even) replace x with – x and see if you get what you started with! To test for symmetry with the origin (odd) replace x and y with –x and –y respectively and see if you get what you started with!

Practice Problems

Determine if the function is even, odd, neither, or both.

35) $y = x^4 - 6x^2 + 3$ 36) $x^2 + y^2 = 64$

37)
$$y = \frac{x^3 - x}{x^2}$$

38)
$$y = \frac{1}{x^2 - 1}$$

39) $y = x^4 + x^2$

LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Notes

Example: Simplify
$$\log_{125} \frac{1}{5}$$

 $\log_{125} \frac{1}{5}$ $5^{3}x = 5^{-1}$
 $\log_{125} \frac{1}{5}$ $3x = -1$
 $\log_{125} \frac{1}{5}$ $3x = -1$
 $x = -\frac{1}{3}$

✓ **Things to remember:** Logarithmic and exponential equations are inverses of one another- you use them to solve one another!

Practice Problems Simplify the following expressions.

40) $\log_4 \frac{1}{16}$ 41) ln e

42) $3\log_3 3 - \frac{3}{4}\log_3 81 + \frac{1}{3}\log_3 \frac{1}{27}$ 43) ln 1

44) log₉27

45) $\ln \frac{1}{e^3}$

46) $\log_{w} w^{45}$

Solve for x. Round to three decimal places.

47) $2^x = 5$ 48) $\log x^2 - \log 100 = \log 1$

49) $e^x - 4 = 0$

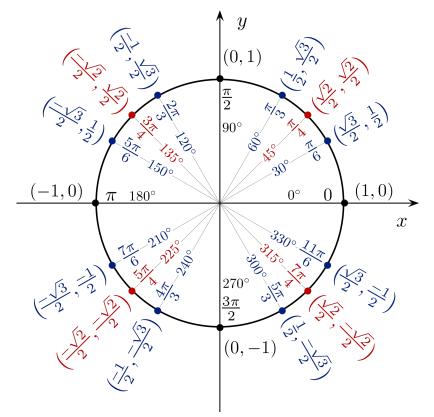
50) $3^{x+1} = 15$

51) $\log_6(x+3) + \log_6(x+4) = 1$

the Unit Circle

Notes

You need to have this memorized!



✓ **Things to remember:** Reference angles, entire unit circle, and using unit circle to find inverse trigonometric functions!

Practice Problems Find the following.

52) $\sec \frac{-\pi}{6}$	53) $\cot 8\pi$
54) $\tan \frac{9\pi}{4}$	55) $\tan \frac{5\pi}{2}$
56) $\cos \frac{11\pi}{3}$	57) csc $\frac{-5\pi}{6}$
58) $\sin \frac{11\pi}{4}$	59) $\sin \frac{7\pi}{3}$

60)
$$\arcsin 1$$
 61) $\arccos \frac{\sqrt{3}}{2}$ 62) $\cos^{-1} \left(\cos \frac{1}{2} \right)$
63) $\sin^{-1} \frac{-\sqrt{2}}{2}$ 64) $\sin \left(\arccos \frac{\sqrt{3}}{2} \right)$

Convert from radians to degrees or degrees to radians. $65)\frac{\pi}{3}$ $66)45^{\circ}$ $67)-9^{\circ}$

Solve the following equations on the given interval.

68) $\cos^2 x = \cos x + 2$, $0 \le x \le 2\pi$

69) $2\sin(2x) = \sqrt{3}, \ 0 \le x \le 2\pi$

70) $4\cos^2 x = 1$, $0 \le x \le 2\pi$

trigonometric Identities

Notes

You need to have this memorized!

Reciprocal	1	0 1
Identities	$\sin\theta = \frac{1}{\csc\theta}$	$\csc\theta = \frac{1}{\sin\theta}$
	$\cos\theta = \frac{1}{\sec\theta}$	$\sec \theta = \frac{1}{\cos \theta}$
	$\tan\theta = \frac{1}{\cot\theta}$	$\cot \theta = \frac{1}{\tan \theta}$
Quotient Identities	$\tan\theta = \frac{\sin\theta}{\theta}$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$
	$tano = \frac{1}{\cos\theta}$	$\cot \theta = \frac{1}{\sin \theta}$
Pythagorean	$\sin^2 x + \cos^2 x = 1$	
Identities		$x + 1 = \sec^2 x$
	$\cot^2 x + 1 = \csc^2 x$	

✓ **Things to remember:** Be able to use these identities to simplify trigonometric expressions! It is important that you memorize these!

Practice Problems

Simplify the following expressions.

$71) \frac{(\tan^2 x \cdot \csc^2 x) - 1}{\csc x \cdot \tan^2 x \cdot \sin x}$	72) $\sec^2 x - \tan^2 x$
$csc x \cdot tan^2 x \cdot sin x$	

73) $1 - \cos^2 x$

74) $(\csc x - \tan x) \cos x$

LIMITS (IND CONTINUITY

Notes

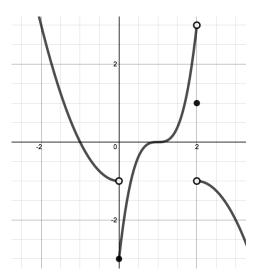
Example: Use limits to show that $f(x) = \frac{x^2+3x+2}{x+1}$ is not continuous at x = -1.

$$\int (x) = \frac{x^{2} + 3x + 2}{x + 1} \qquad \boxed{x - 1.02 - 1.01 - 1 - .99 - .98} \\ f(x) = \frac{x^{2} + 3x + 2}{x + 1} \qquad \boxed{x - 1.02 - 1.01 - 1 - .99 - .98} \\ f(x) = \frac{1}{f(x) - .98} \qquad \boxed{y - .98} \\ f(x) = \frac{1}{1 - .98} \qquad \boxed{y - .98} \\ f(x) = \frac{1}{1 - .98} \qquad \boxed{y - .98} \\ f(x) = \frac{1}{1 - .98$$

✓ **Things to remember:** The continuity test and the three types of discontinuities!

Proofice Problems Evaluate the following limits using a table. 75) $\lim_{z \to 0^{-}} \frac{\sqrt{z+9}-3}{z} =$ 76) $\lim_{z \to 0^{+}} \frac{\sqrt{z+9}-3}{z} =$ 77) $\lim_{z \to 0} \frac{\sqrt{z+9}-3}{z} =$

Evaluate the following limits using the graph provided below.



78)
$$\lim_{x \to 0^{-}} f(x) =$$

80) $\lim_{x \to 0} f(x) =$
79) $\lim_{x \to 0^{+}} f(x) =$
81) $f(0) =$

82) Is the graph of f(x) continuous at x = 0? If not continuous, what type of discontinuity occurs at x = 0.

83) $\lim_{x \to 1^{-}} f(x) =$ 84) $\lim_{x \to 1^{+}} f(x) =$ 85) $\lim_{x \to 1} f(x) =$ 86) f(1) =

87) Is the graph of f(x) continuous at x = 1? If not continuous, what type of discontinuity occurs at x = 1.